Genomic Evidence Reveals the Extreme Diversity and Wide Distribution of the Arsenic-Related Genes in Burkholderiales
نویسندگان
چکیده
So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance.
منابع مشابه
Genome-wide Association Study to Identify Genes and Biological Pathways Associated with Type Traits in Cattle using Pathway Analysis
Extended Abstract Introduction and Objective: Type traits describing the skeletal characteristics of an animal are moderately to strongly genetically correlate with other economically important traits in cattle including fertility, longevity and carcass traits. The present study aimed to conduct a genome wide association studies (GWAS) based on gene-set enrichment analysis for identifying the ...
متن کاملEvaluation of the Possibility of Chromosomal and Plasmid-Dependent Antibiotic-Transferable Genes in Acinetobacter Genomic Isolates Isolated from Clinical Specimens and genotype
Background: Acinetobacter baumannii is one of the most important causes of nosocomial infections and has an extraordinary ability to obtain antimicrobial resistance to a wide range of antibiotics. Multidrug-resistant strains and producers of AmpC beta-lactamases of this bacterium cause serious infectious diseases in different parts of the hospital and in hospitalized people, and the treatment o...
متن کاملThe polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island.
Pseudomonas sp. 14-3 is an Antarctic bacterium that shows high stress resistance in association with high polyhydroxybutyrate (PHB) production. In this paper genes involved in PHB biosynthesis (phaRBAC) were found within a genomic island named pha-GI. Numerous mobile elements or proteins associated with them, such as an integrase, insertion sequences, a bacterial group II intron, a complete Typ...
متن کاملGenomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales.
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic...
متن کاملApplication of DNA Molecular Markers in Plant Breeding (Review article)
Plant Breeding has utilized a wide range of techniques and methods to improve the quality and quantity of plants. The molecular markers are the tools that have provided a new perspective for plant breeding advancements. This article has reviewed the various advantages and uses of molecular markers and the utilization of the high potential of natural polymorphisms within communities, combined wi...
متن کامل